On the Development of Smart Framework for Printability Maps in Additive Manufacturing of AISI 316L Stainless Steel.

关于 AISI 316L 不锈钢增材制造中可打印性图的智能框架的开发

阅读:3
作者:Mahmood Muhammad Arif, Ur Rehman Asif, Khraisheh Marwan
In this work, we propose a methodology to develop printability maps for the laser powder bed fusion of AISI 316L stainless steel. Regions in the process space associated with different defect types, including lack of fusion, balling, and keyhole formation, have been considered as a melt pool geometry function, determined using a finite element method model containing temperature-dependent thermophysical properties. Experiments were performed to validate the printability maps, showing a reliable correlation between experiments and simulations. The validated simulation model was then applied to collect the data by varying laser scanning speed, laser power, powder layer thickness, and powder bed preheating temperature. Following this, the collected data were used to train and test the adaptive neuro-fuzzy interference system (ANFIS)-based machine learning model. The validated ANFIS model was used to develop printability maps by correlating the melt pool characteristics to the defect types. The smart printability maps produced by the proposed methodology can be used to identify the processing window to attain defects-free components, thus attaining dense parts.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。