Application of visual communication in digital animation advertising design using convolutional neural networks and big data.

将视觉传达应用于数字动画广告设计,利用卷积神经网络和大数据

阅读:3
作者:Fang Jingyi, Gong Xiang
In the age of big data, visual communication has emerged as a critical means of engaging with customers. Among multiple modes of visual communication, digital animation advertising is an exceptionally potent tool. Advertisers can create lively and compelling ads by harnessing the power of digital animation technology. This article proposes a multimodal visual communication system (MVCS) model based on multimodal video emotion analysis. This model automatically adjusts video content and playback mode according to users' emotions and interests, achieving more personalized video communication. The MVCS model analyses videos from multiple dimensions, such as vision, sound, and text, by training on a large-scale video dataset. We employ convolutional neural networks to extract the visual features of videos, while the audio and text features are extracted and analyzed for emotions using recurrent neural networks. By integrating feature information, the MVCS model can dynamically adjust the video's playback mode based on users' emotions and interaction behaviours, which increases its playback volume. We conducted a satisfaction survey on 106 digitally corrected ads created using the MVCS method to evaluate our approach's effectiveness. Results showed that 92.6% of users expressed satisfaction with the adjusted ads, indicating the MVCS model's efficacy in enhancing digital ad design effectiveness.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。