Rapid identification of flight actions by utilizing flight data is more realistic so the quality of flight training can be objectively assessed. The bidirectional long short-term memory (bi-LSTM) algorithm is implemented to forecast the flight actions of aircraft. The dataset containing the flight actions is structured by collecting tagged flight data when real flight training is exercised. However, the dataset needs to be preprocessed and annotated with expert rules. One of the deep learning (DL) methods, called the bi-LSTM algorithm, is implemented to train and test, and the pivotal parameters of the algorithm are optimized. Finally, the constructed model is applied to forecast the flight actions of aircraft. The training's accuracy and loss rates are computed. The duration is kept between 1 through 3 h per session. Thus, the development of training the model is continued until an accuracy rate above 85% is achieved. The word-run inference time is kept under 2 s. Finally, the proposed algorithm's specific characteristics, which are short training time and high recognition accuracy, are achieved when complex rules and large sample sizes exist.
Research on intelligent forecasts of flight actions based on the implemented bi-LSTM.
基于所实现的双向LSTM的飞行动作智能预测研究
阅读:3
作者:Hua Xin, Yang Xuejie
| 期刊: | PeerJ Computer Science | 影响因子: | 2.500 |
| 时间: | 2024 | 起止号: | 2024 Jun 28; 10:e2153 |
| doi: | 10.7717/peerj-cs.2153 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
