SHAKE parallelization.

SHAKE并行化

阅读:5
作者:Elber Ron, Ruymgaart A Peter, Hess Berk
SHAKE is a widely used algorithm to impose general holonomic constraints during molecular simulations. By imposing constraints on stiff degrees of freedom that require integration with small time steps (without the constraints) we are able to calculate trajectories with time steps larger by approximately a factor of two. The larger time step makes it possible to run longer simulations. Another approach to extend the scope of Molecular Dynamics is parallelization. Parallelization speeds up the calculation of the forces between the atoms and makes it possible to compute longer trajectories with better statistics for thermodynamic and kinetic averages. A combination of SHAKE and parallelism is therefore highly desired. Unfortunately, the most widely used SHAKE algorithm (of bond relaxation) is inappropriate for parallelization and alternatives are needed. The alternatives must minimize communication, lead to good load balancing, and offer significantly better performance than the bond relaxation approach. The algorithm should also scale with the number of processors. We describe the theory behind different implementations of constrained dynamics on parallel systems, and their implementation on common architectures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。