Biomechanical analysis of the human lower limbs plays a critical role in movement assessment, injury prevention, and rehabilitation guidance. Traditional gait analysis techniques, such as optical motion capture systems and biomechanical force platforms, are limited by high costs, operational complexity, and restricted applicability. In view of this, this study proposes a cost-effective and user-friendly approach that integrates inertial measurement units (IMUs) with a novel deep learning framework for real-time lower limb joint torque estimation. The proposed method combines time-frequency domain analysis through continuous wavelet transform (CWT) with a hybrid architecture comprising multi-head self-attention (MHSA), bidirectional long short-term memory (Bi-LSTM), and a one-dimensional convolutional residual network (1D Conv ResNet). This integration enhances feature extraction, noise suppression, and temporal dependency modeling, particularly for non-stationary and nonlinear signals in dynamic environments. Experimental validation on public datasets demonstrates high accuracy, with a root mean square error (RMSE) of 0.16 N·m/kg, Coefficient of Determination (R (2)) of 0.91, and Pearson correlation coefficient of 0.95. Furthermore, the framework outperforms existing models in computational efficiency and real-time applicability, achieving a single-cycle inference time of 152.6 ms, suitable for portable biomechanical monitoring systems.
Estimation of lower limb torque: a novel hybrid method based on continuous wavelet transform and deep learning approach.
下肢扭矩估计:一种基于连续小波变换和深度学习方法的新型混合方法
阅读:2
作者:Xu Shu, Wang Tao, Ding Zenghui, Wang Yu, Wan Tongsheng, Xu Dezhang, Yang Xianjun, Sun Ting, Li Meng
| 期刊: | PeerJ Computer Science | 影响因子: | 2.500 |
| 时间: | 2025 | 起止号: | 2025 May 30; 11:e2888 |
| doi: | 10.7717/peerj-cs.2888 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
