Unveiling the Therapeutic Potential of Dulaglutide in Mitigating Tacrolimus-Induced Nephrotoxicity Through Targeting the miR-22/HMGB-1/TLR4/MyD88/NF-κB Trajectory.

揭示度拉糖肽通过靶向 miR-22/HMGB-1/TLR4/MyD88/NF-αB 通路减轻他克莫司诱导的肾毒性的治疗潜力

阅读:10
作者:Abdelhady Rasha, Arab Hany H, Fakhr Eldeen Rasha R, Shalaby Heba Nasr, Nawwar Dalia A, Elhemely Mai Abdallah, Sayed Rabab H
Tacrolimus (Tac) is an immunosuppressive drug used to reduce the risk of allograft rejection; however, it can induce renal injury. High mobility group box 1 (HMGB-1) protein, which induces inflammation through the aberrant stimulation of the Toll-like receptor 4 (TLR4)/myeloid differentiation primary response protein (MyD88)/nuclear factor kappa B (NF-κB) trajectory, could represent a molecular target for alleviating Tac-induced renal damage. The present study aimed to investigate the potential protective role of the GLP-1 agonist, dulaglutide (Dula), against Tac-induced nephrotoxicity in rats. Rats were administered Tac (5 mg/kg/day) and vehicle or Dula (0.2 mg/kg once a week) for 14 days. Treatment with Dula reduced serum creatinine plus blood urea nitrogen and attenuated Tac-induced renal histopathological changes. Dula treatment also hampered renal inflammation and restored redox homeostasis, as indicated by remarkably reduced tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), malondialdehyde (MDA), and NADPH oxidase 1 levels alongside marked replenishment in reduced glutathione (GSH) content. These effects were mediated through the upregulation of miR-22 expression and the consequent inhibition of the HMGB-1/TLR4/MyD88/NF-κB trajectory. Collectively, Dula has been demonstrated to protect rats against Tac-induced nephrotoxicity by reducing inflammation, restoring redox homeostasis, and modulation of the miR-22/HMGB-1/TLR4/MyD88/NF-κB trajectory. Dula may be beneficial clinically in preventing Tac-induced renal injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。