Polyphosphate discriminates protein conformational ensembles more efficiently than DNA promoting diverse assembly and maturation behaviors.

多聚磷酸盐比 DNA 更能有效地区分蛋白质构象集合体,从而促进多样化的组装和成熟行为

阅读:3
作者:Goyal Saloni, Rajendran Divya, Mani Anup Kumar, Naganathan Athi N
Disordered proteins and domains often assemble into condensates with polyanionic nucleic acids, primarily via charge complementarity, regulating numerous cellular functions. However, the assembly mechanisms associated with the other abundant and ubiquitous, anionic, stress-response regulating polymer, polyphosphate (polyP), are less understood. Here, we employ the intrinsically disordered DNA-binding domain (DBD) of cytidine repressor (CytR) from E. coli to study the nature of assembly processes with polyP and DNA. CytR forms metastable liquid-like condensates with polyP and DNA, while undergoing liquid-to-solid transition in the former and dissolving in the latter. On mutationally engineering the ensemble to exhibit more or less structure and dimensions than the WT, the assembly process with polyP is directed to either condensates with partial time-dependent dissolution or spontaneous aggregation, respectively. On the other hand, the CytR variants form only liquid-like but metastable droplets with DNA which dissolve within a few hours. Polyphosphate induces large secondary-structure changes, with two of the mutants adopting polyproline II-like structures within droplets, while DNA has only minimal structural effects. Our findings reveal how polyphosphate can more efficiently discern conformational heterogeneity in the starting protein ensemble, its structure, and compactness, with broad implications in assembly mechanisms involving polyP and stress response in bacterial systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。