Interactions with bacteria play a major role in immune responses, ecology, and evolution of all animals, but they have been neglected until recently in the case of C. elegans. We report a genetic investigation of the interaction of C. elegans with the nematode-specific pathogen Microbacterium nematophilum, which colonizes the rectum and causes distinctive tail swelling in its host. A total of 121 mutants with altered response to infection were isolated from selections or screens for a bacterially unswollen (Bus) phenotype, using both chemical and transposon mutagenesis. Some of these correspond to known genes, affecting either bacterial adhesion or colonization (srf-2, srf-3, srf-5) or host swelling response (sur-2, egl-5). Most mutants define 15 new genes (bus-1-bus-6, bus-8, bus-10, bus-12-bus-18). The majority of these mutants exhibit little or no rectal infection when challenged with the pathogen and are probably altered in surface properties such that the bacteria can no longer infect worms. A number have corresponding alterations in lectin staining and cuticle fragility. Most of the uninfectable mutants grow better than wild type in the presence of the pathogen, but the sur-2 mutant is hypersensitive, indicating that the tail-swelling response is associated with a specific defense mechanism against this pathogen.
Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum.
多个基因影响秀丽隐杆线虫对细菌病原体线虫微杆菌的敏感性
阅读:6
作者:Gravato-Nobre Maria J, Nicholas Hannah R, Nijland Reindert, O'Rourke Delia, Whittington Deborah E, Yook Karen J, Hodgkin Jonathan
| 期刊: | Genetics | 影响因子: | 5.100 |
| 时间: | 2005 | 起止号: | 2005 Nov;171(3):1033-45 |
| doi: | 10.1534/genetics.105.045716 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
