In vivo measurements of irreversible and reversible transverse relaxation rates in human basal ganglia at 7 T: making inferences about the microscopic and mesoscopic structure of iron and calcification deposits.

在 7T 下对人类基底神经节中不可逆和可逆横向弛豫率进行体内测量:推断铁和钙化沉积物的微观和介观结构

阅读:4
作者:Balasubramanian Mukund, Polimeni Jonathan R, Mulkern Robert V
The goal of this study was to measure irreversible and reversible transverse relaxation rates in the globus pallidus and putamen at 7 T, and to use these rates to make inferences about the sub-voxel structure of iron and calcification deposits. Gradient Echo Sampling of a Spin Echo (GESSE) data were acquired at 7 T on eighteen volunteers spanning a large range of ages (23-85 years), with calcifications in the globus pallidus incidentally observed in one volunteer. Maps of transverse relaxation rates were derived from the GESSE data, and the mean value of these rates in globus pallidus and putamen was estimated for each volunteer. Both irreversible and reversible transverse relaxation rates increased with the expected age-dependent iron content in these structures, except for the individual with calcifications for whom extremely large reversible relaxation rates but normal irreversible relaxation rates were found in the globus pallidus. Given the sensitivity of irreversible and reversible transverse relaxation rates to microscopic and mesoscopic field variations, respectively, our findings suggest that joint consideration of these rates may yield information not only about the amount of iron and calcification deposited in the brain, but also about the sub-voxel structure of these deposits, perhaps revealing certain aspects of their geometry and cellular distribution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。