The metabolic hallmarks of heart failure (HF) include diminished ATP hydrolysis potential and alterations in myocardial energy substrate metabolism, such as a switch in substrate utilization away from fatty acid (FA) to carbohydrate oxidation and reduced metabolic flexibility. However, the mechanisms underlying these phenomena and their potential contributions to impaired exercise tolerance are poorly understood. We developed a comprehensive quantitative systems pharmacology (QSP) model of mitochondrial metabolism to interrogate specific pathways hypothesized to contribute to reductions in reserve cardiac power output in heart failure. The aim of this work was to understand how changes in mitochondrial function and cardiac energetics associated with heart failure may affect exercise capacity. To accomplish this task, we coupled published in silico models of oxidative phosphorylation and the tricarboxylic acid cycle with a model of β-oxidation and extended the model to incorporate an updated representation of the enzyme pyruvate dehydrogenase (PDH) to account for the role of PDH in substrate selection. We tested several hypotheses to determine how metabolic dysfunction, such as a decrease in PDH activity or altered mitochondrial volume, could lead to marked changes in energetic biomarkers, such as myocardial phosphocreatine-ATP ratio (PCr/ATP). The model predicts expected changes in fuel selection and also demonstrates PDH activity is responsible for substrate-dependent switch driven by feedback from NAD, NADH, ATP, ADP, CoASH, Acetyl-CoA and pyruvate in healthy and simulated HF conditions. Through simulations, we also found elevated malonyl-coA may contribute to lower PCr/ATP ratio during exercise conditions as observed in some HF patients.
Development of a Quantitative Systems Pharmacology Model to Interrogate Mitochondrial Metabolism in Heart Failure.
开发定量系统药理学模型以研究心力衰竭中的线粒体代谢
阅读:3
作者:Meyer Lyndsey F, Nourabadi Neda, Musante Cynthia J, Beard Daniel A, Sher Anna
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 11 |
| doi: | 10.1101/2025.07.08.663697 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
