The diverse microbiota of the intestine is expected to benefit the host, yet the beneficial metabolites derived from the microbiota are still poorly understood. Enterobactin (Ent) is a well-known secreted iron-scavenging siderophore made by bacteria to fetch iron from the host or environment. Little was known about a positive role of Ent until a recent discovery in the nematode C. elegans indicated a beneficial role of Ent in promoting mitochondrial iron level in the animal intestine. To solidify this new paradigm, we further tested this role in C. elegans and multiple mammalian cell models and its relationship with the primary iron transporter DMT1/SMF-3 and several other iron-related genes. Here we show that ferric enterobactin (FeEnt) supplementation promotes whole organism development in C. elegans, increases iron uptake in caco-2 human intestinal epithelial cells, and supports iron-dependent differentiation of murine erythroid progenitor cells, indicating that the FeEnt complex can effectively enter these cells and be bioavailable. Our data in multiple models demonstrate that FeEnt-mediated iron transport is independent of all tested iron transporters. In addition, FeEnt supplementation robustly suppresses the developmental defects of a hif-1 mutant under low iron condition, suggesting the critical role in iron homeostasis for this well-known hypoxia regulator. These results suggest that FeEnt can effectively enter animal cells and their mitochondria through a previously unknown mechanism that may be leveraged as a therapeutic ferric iron carrier for the treatment of DMT1- or HIF-1-related iron deficiency and anemia.
Enterobactin carries iron into C. elegans and mammalian intestinal cells by a mechanism independent of divalent metal transporter DMT1.
肠杆菌素通过一种不依赖于二价金属转运蛋白 DMT1 的机制,将铁输送到秀丽隐杆线虫和哺乳动物肠道细胞中
阅读:3
作者:Sewell Aileen K, Cui Mingxue, Zhu Mengnan, Host Miranda R, Han Min
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Dec 21 |
| doi: | 10.1101/2024.12.20.629725 | 种属: | C. elegans |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
