Unsupervised segmentation of greenhouse plant images based on modified Latent Dirichlet Allocation.

基于改进的潜在狄利克雷分配的温室植物图像无监督分割

阅读:4
作者:Wang Yi, Xu Lihong
Agricultural greenhouse plant images with complicated scenes are difficult to precisely manually label. The appearance of leaf disease spots and mosses increases the difficulty in plant segmentation. Considering these problems, this paper proposed a statistical image segmentation algorithm MSBS-LDA (Mean-shift Bandwidths Searching Latent Dirichlet Allocation), which can perform unsupervised segmentation of greenhouse plants. The main idea of the algorithm is to take advantage of the language model LDA (Latent Dirichlet Allocation) to deal with image segmentation based on the design of spatial documents. The maximum points of probability density function in image space are mapped as documents and Mean-shift is utilized to fulfill the word-document assignment. The proportion of the first major word in word frequency statistics determines the coordinate space bandwidth, and the spatial LDA segmentation procedure iteratively searches for optimal color space bandwidth in the light of the LUV distances between classes. In view of the fruits in plant segmentation result and the ever-changing illumination condition in greenhouses, an improved leaf segmentation method based on watershed is proposed to further segment the leaves. Experiment results show that the proposed methods can segment greenhouse plants and leaves in an unsupervised way and obtain a high segmentation accuracy together with an effective extraction of the fruit part.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。