A Surface Plasmon Resonance-Based Integrated Assay for Quantification and Glycosylation Characterization of Monoclonal Antibodies in Crude Heterogeneous Samples.

基于表面等离子体共振的综合检测方法,用于对粗制异质样品中的单克隆抗体进行定量和糖基化表征

阅读:5
作者:Metayer Ilona, Forest-Nault Catherine, Guimond Julie, Joubert Simon, Henry Olivier, Durocher Yves, De Crescenzo Gregory, Gaudreault Jimmy
The rise in cancer, autoimmune, inflammatory, and infectious diseases in recent decades has led to a surge in the development of monoclonal antibodies (mAbs) therapies, now the most widely used family of biologics. To meet the growing global demand, biopharmaceutical industries are intensifying their production processes. One approach to achieve more efficient production of effective mAbs is to develop tools for real-time quality monitoring. Specifically, the glycosylation profile of mAbs must be closely monitored, since it greatly impacts their therapeutic efficacy and innocuity, making it a critical quality attribute. In this study, we developed a surface plasmon resonance-based integrated assay allowing for the simultaneous quantification and glycosylation characterization of mAbs in crude samples, hence permitting the at-line analysis of bioreactor cell cultures. Thanks to the high specificity of the interaction between biosensor surface-bound protein A and the Fc region of mAbs, we quantified crude IgG samples under mass transport limitations. Next, by flowing running buffer on the surface, impurities contained in the mAbs samples were washed away from the biosensor surface, allowing subsequent recording of the kinetics between the captured mAbs and injected FcγRII receptors. Of interest, with this strategy, we were able to quantify terminal galactosylation and core fucosylation of IgG lots, two important glycan modifications for mAb efficacy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。