The rise in cancer, autoimmune, inflammatory, and infectious diseases in recent decades has led to a surge in the development of monoclonal antibodies (mAbs) therapies, now the most widely used family of biologics. To meet the growing global demand, biopharmaceutical industries are intensifying their production processes. One approach to achieve more efficient production of effective mAbs is to develop tools for real-time quality monitoring. Specifically, the glycosylation profile of mAbs must be closely monitored, since it greatly impacts their therapeutic efficacy and innocuity, making it a critical quality attribute. In this study, we developed a surface plasmon resonance-based integrated assay allowing for the simultaneous quantification and glycosylation characterization of mAbs in crude samples, hence permitting the at-line analysis of bioreactor cell cultures. Thanks to the high specificity of the interaction between biosensor surface-bound protein A and the Fc region of mAbs, we quantified crude IgG samples under mass transport limitations. Next, by flowing running buffer on the surface, impurities contained in the mAbs samples were washed away from the biosensor surface, allowing subsequent recording of the kinetics between the captured mAbs and injected FcγRII receptors. Of interest, with this strategy, we were able to quantify terminal galactosylation and core fucosylation of IgG lots, two important glycan modifications for mAb efficacy.
A Surface Plasmon Resonance-Based Integrated Assay for Quantification and Glycosylation Characterization of Monoclonal Antibodies in Crude Heterogeneous Samples.
基于表面等离子体共振的综合检测方法,用于对粗制异质样品中的单克隆抗体进行定量和糖基化表征
阅读:15
作者:Metayer Ilona, Forest-Nault Catherine, Guimond Julie, Joubert Simon, Henry Olivier, Durocher Yves, De Crescenzo Gregory, Gaudreault Jimmy
| 期刊: | Biotechnology and Bioengineering | 影响因子: | 3.600 |
| 时间: | 2025 | 起止号: | 2025 Oct;122(10):2724-2738 |
| doi: | 10.1002/bit.70016 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
