Brain Microtubule Electrical Oscillations-Empirical Mode Decomposition Analysis.

脑微管电振荡的经验模态分解分析

阅读:5
作者:Scarinci Noelia, Priel Avner, Cantero María Del Rocío, Cantiello Horacio F
Microtubules (MTs) are essential cytoskeletal polymers of eukaryote cells implicated in various cell functions, including cell division, cargo transfer, and cell signaling. MTs also are highly charged polymers that generate electrical oscillations that may underlie their ability to act as nonlinear transmission lines. However, the oscillatory composition and time-frequency differences of the MT electrical oscillations have not been identified. Here, we applied the Empirical Mode Decomposition (EMD) to bovine brain MT sheet recordings to determine the number and fundamental frequencies of the Intrinsic Modes Functions (IMF) and evaluate their energetic contribution to the electrical signal. As previously reported, raw signals were obtained from cow brain MTs (Cantero et al. Sci Rep 6:27143, 2016), sampled, filtered, and subjected to signal decomposition from representative experiments. Filtered signals (200 Hz) allowed us to identify either six or seven IMFs. The reconstructed tracings faithfully resembled the original signals, with identifiable frequency peaks. To extend the analysis to obtain time-frequency information and the energy implicated in each IMF, we applied the Hilbert-Huang Transform (HHT) and the Continuous Wavelet Transform (CWT) to the same samples. The analyses disclosed the presence of more fundamental frequency peaks than initially reported and evidenced the advantages and disadvantages of each transform. The study indicates that the EMD is a robust approach to quantifying signal decomposition of brain MT oscillations and suggests novel similarities with human brain wave electroencephalogram (EEG) recordings. The evidence points to the potentially fundamental role of MT oscillations in brain electrical activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。