Monitoring cytosolic and ER Zn(2+) in stimulated breast cancer cells using genetically encoded FRET sensors.

利用基因编码的 FRET 传感器监测受刺激乳腺癌细胞中的胞质和内质网 Zn(2+)

阅读:3
作者:Hessels Anne M, Taylor Kathryn M, Merkx Maarten
The Zn(2+)-specific ion channel ZIP7 has been implicated to play an important role in releasing Zn(2+) from the ER. External stimulation of breast cancer cells has been proposed to induce phosphorylation of ZIP7 by CK2α, resulting in ZIP7-mediated Zn(2+) release from the ER into the cytosol. Here, we examined whether changes in cytosolic and ER Zn(2+) concentrations can be detected upon such external stimuli. Two previously developed FRET sensors for Zn(2+), eZinCh-2 (Kd = 1 nM at pH 7.1) and eCALWY-4 (Kd = 0.63 nM at pH 7.1), were expressed in both the cytosol and the ER of wild-type MCF-7 and TamR cells. Treatment of MCF-7 and TamR cells with external Zn(2+) and pyrithione, one of the previously used triggers, resulted in an immediate increase in free Zn(2+) in both cytosol and ER, suggesting that Zn(2+) was directly transferred across the cellular membranes by pyrithione. Cells treated with a second trigger, EGF/ionomycin, showed no changes in intracellular Zn(2+) levels, neither in multicolor imaging experiments that allowed simultaneous imaging of cytosolic and ER Zn(2+), nor in experiments in which cytosolic and ER Zn(2+) were monitored separately. In contrast to previous work using small-molecule fluorescent dyes, these results indicate that EGF-ionomycin treatment does not result in significant changes in cytosolic Zn(2+) levels as a result from Zn(2+) release from the ER. These results underline the importance of using genetically encoded fluorescent sensors to complement and verify intracellular imaging experiments with synthetic fluorescent Zn(2+) dyes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。