Revisiting and questioning functional rescue between dimerized LH receptor mutants.

重新审视和质疑二聚化 LH 受体突变体之间的功能拯救

阅读:3
作者:Zhang Meilin, Guan Rongbin, Segaloff Deborah L
The glycoprotein hormone receptors are G protein-coupled receptors containing a large extracellular domain fused to a prototypical serpentine domain. cis-activation occurs when binding of hormone to the extracellular domain stabilizes the serpentine domain in an active conformation. Studies by others suggested that these receptors can also signal by trans-activation, where hormone binding to one receptor protomer activates the serpentine domain of an associated protomer, as documented by the partial rescue of hormone-dependent signaling when a binding defective mutant is coexpressed with a signaling defective mutant. However, our characterizations of several LH receptor (LHR) mutants used in previous studies differ markedly from those originally reported. Also, when examining a pair of LHR mutants previously shown to functionally rescue in vitro as well as in vivo, in addition to finding that the properties of the individual mutants differ significantly from those originally described, we determined that when this pair of mutants was coexpressed in vitro, quantitative analyses did not indicate functional rescue. Additional data are presented that provide a plausible alternate explanation for the apparent in vivo trans-activation that was reported. Finally, using LHR mutants that we have documented to be expressed at the cell surface but to lack human chorionic gonadotropin binding activity or to be severely impaired in their ability to activate Gs, we did not observe functional rescue of human chorionic gonadotropin-stimulated cAMP when the mutants were coexpressed, even though bioluminescence resonance energy transfer analyses confirmed that the coexpressed mutants formed dimers. Taken altogether, our data substantively question the concept of functional rescue between LHR mutants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。