Planar Micro-Supercapacitors with High Power Density Screen-Printed by Aqueous Graphene Conductive Ink.

采用水性石墨烯导电油墨丝网印刷的高功率密度平面微型超级电容器

阅读:3
作者:Wang Youchang, Zhang Xiaojing, Zhu Yuwei, Li Xiaolu, Shen Zhigang
Simple and scalable production of micro-supercapacitors (MSCs) is crucial to address the energy requirements of miniature electronics. Although significant advancements have been achieved in fabricating MSCs through solution-based printing techniques, the realization of high-performance MSCs remains a challenge. In this paper, graphene-based MSCs with a high power density were prepared through screen printing of aqueous conductive inks with appropriate rheological properties. High electrical conductivity (2.04 × 10(4) S∙m(-1)) and low equivalent series resistance (46.7 Ω) benefiting from the dense conductive network consisting of the mesoporous structure formed by graphene with carbon black dispersed as linkers, as well as the narrow finger width and interspace (200 µm) originating from the excellent printability, prompted the fully printed MSCs to deliver high capacitance (9.15 mF∙cm(-2)), energy density (1.30 µWh∙cm(-2)) and ultrahigh power density (89.9 mW∙cm(-2)). Notably, the resulting MSCs can effectively operate at scan rates up to 200 V∙s(-1), which surpasses conventional supercapacitors by two orders of magnitude. In addition, the MSCs demonstrate excellent cycling stability (91.6% capacity retention and ~100% Coulombic efficiency after 10,000 cycles) and extraordinary mechanical properties (92.2% capacity retention after 5000 bending cycles), indicating their broad application prospects in flexible wearable/portable electronic systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。