Cryopreserving 3D cell culture models of Alzheimer's disease in hydrogel microbeads.

将阿尔茨海默病的三维细胞培养模型冷冻保存于水凝胶微珠中

阅读:6
作者:Kim Jae Jung, Hebisch Matthias, Kwak Sang Su, Zheng Monica, Nuli Shreya, Bae Jun-Seok, Brand Emma, Tanzi Rudolph E, Irimia Daniel, Kim Doo Yeon
Long-term preservation of fully differentiated human neurons poses a longstanding challenge in neuroscience research. Numerous cellular disease models have been established using cultured human neuronal cells, including our three-dimensional (3D) human neural cell culture model of Alzheimer's disease (AD). However, the absence of a reliable method for preserving fully differentiated human neural cell cultures for a long time has hindered the sharing and standardization of these models. To address this critical limitation, we focused on cryopreservation, which is the gold standard for long-term preservation, and combined this with three key technological advancements. First, we employed parallelized microfluidic devices for the efficient generation of 3D cell cultures within uniform hydrogel microbeads (~ 220 μm), which facilitate the rapid exchange of media ingredients and cryoprotectants. Second, we implemented a cytophobic microwell system to safeguard neuron-encapsulated microbeads from fusion and aggregation. Third, we developed a novel inducible AD cell model optimized for cryopreservation and AD drug testing. We have successfully maintained encapsulated control and AD neural progenitor cells in microwells during differentiation for 12 days. Notably, fully differentiated human neural cells can be cryopreserved within Matrigel microbeads while retaining intact and mature neuronal processes, exhibiting no signs of damage to neurites following freeze/thaw cycles. Furthermore, we have demonstrated the successful cryopreservation, thawing, and induction of pathogenic Amyloid-β 42 (Aβ42) generation in fully differentiated AD neural progenitor cells. Our study offers a solution for one of the major challenges in neuroscience research, utilizing porous hydrogel microbead structures to facilitate rapid delivery of cryoprotectants and protect complex neuronal structures without undergoing damaging cell dissociation steps. The inducible "3D human microbead model of AD" enhances the speed, efficacy, and reproducibility of AD drug screening.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。