Therapeutic effects of a non-β cell bioartificial pancreas in diabetic mice.

非β细胞生物人工胰腺对糖尿病小鼠的治疗效果

阅读:7
作者:Tiernan Aubrey R, Thulé Peter M, Sambanis Athanassios
BACKGROUND: Cell-based insulin therapies can potentially improve glycemic regulation in insulin-dependent diabetic patients. Enteroendocrine cells engineered to secrete recombinant insulin have exhibited glycemic efficacy, but have been primarily studied as uncontrollable growth systems in immune incompetent mice. Furthermore, reports suggest that suboptimal insulin secretion remains a barrier to expanded application. METHODS: Genetic and tissue engineering strategies were applied to improve recombinant insulin secretion from intestinal L-cells on both a per-cell and per-graft basis. Transduction of insulin-expressing GLUTag L-cells with lentivirus carrying an additional human insulin gene-enhanced secretion twofold. We infected cells with lentivirus expressing a luciferase reporter gene to track cell survival in vivo. To provide a growth-controlled and immune protective environment without affecting secretory capacity, cells were microencapsulated in barium alginate. Approximately 9×10(7) microencapsulated cells were injected intraperitoneally in immune competent streptozotocin-induced diabetic mice for therapeutic efficacy evaluation. RESULTS: Graft insulin secretion was increased to 16 to 24 mU insulin per day. Transient normoglycemia was achieved in treated mice two days after transplantation, and endogenous insulin was sufficient to sustain body weights of treated mice receiving minimal supplementation. CONCLUSION: Glycemic efficacy of a bioartificial pancreas based on insulin-secreting enteroendocrine cells is insufficient as a standalone therapy, despite enhancement of graft insulin secretion capacity. Supplemental strategies to alleviate secretion limitations should be pursued.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。