Nitric oxide (NO) has been shown to be an important component of the human immune response, and as such, it is important to understand how pathogenic organisms respond to its presence. In Neisseria gonorrhoeae, recent work has revealed that NsrR, an Rrf2-type transcriptional repressor, can sense NO and control the expression of genes responsible for NO metabolism. A highly pure extract of epitope-tagged NsrR was isolated and mass spectroscopic analysis suggested that the protein contained a [2Fe-2S] cluster. NsrR/DNA interactions were thoroughly analysed in vitro. Using EMSA analysis, NsrR::FLAG was shown to interact with predicted operators in the norB, aniA and nsrR upstream regions with a K(d) of 7, 19 and 35 nM respectively. DNase I footprint analysis was performed on the upstream regions of norB and nsrR, where NsrR was shown to protect the predicted 29 bp binding sites. The presence of exogenously added NO inhibited DNA binding by NsrR. Alanine substitution of C90, C97 or C103 in NsrR abrogated repression of norB::lacZ and inhibited DNA binding, consistent with their presumed role in co-ordination of a NO-sensitive Fe-S centre required for DNA binding.
Functional analysis of NsrR, a nitric oxide-sensing Rrf2 repressor in Neisseria gonorrhoeae.
对淋病奈瑟菌中一氧化氮感应 Rrf2 阻遏物 NsrR 进行功能分析
阅读:7
作者:Isabella Vincent M, Lapek John D Jr, Kennedy Edward M, Clark Virginia L
| 期刊: | Molecular Microbiology | 影响因子: | 2.600 |
| 时间: | 2009 | 起止号: | 2009 Jan;71(1):227-39 |
| doi: | 10.1111/j.1365-2958.2008.06522.x | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
