Augmented Wnt signaling has been implicated in many fibrotic diseases including obstructive nephropathy. Soluble form Klotho has been reported to function as a secreted Wnt antagonist. In this study, we tested whether Klotho protein could reduce renal fibrosis by inhibition of Wnt signaling. Transgenic mice that overexpressed Klotho, wild-type mice, and Klotho hetero mutant mice underwent unilateral ureteral obstruction (UUO). In some Klotho hetero mutant mice, Klotho-encoding plasmid was transferred into the skeletal muscle by electroporation. UUO induced activation of Wnt signaling in wild-type but less in Klotho transgenic mice. Enhanced tubulointerstitial fibrosis in wild-type mice was also attenuated in Klotho transgenic mice. In contrast, Wnt signaling and concomitant tubulointerstitial fibrosis were further augmented in Klotho hetero mutant mice after UUO compared with wild-type mice. In Klotho-encoding plasmid-transfected Klotho hetero mutant mice, however, Wnt signaling was markedly reduced accompanied by a decrease in extracellular matrix deposition after UUO. In vitro studies showed that stimulation of Wnt3a induced prolonged cell cycle arrest at G(2)/M phase, with a resultant increase in production of fibrogenic cytokines. Cotreatment with Klotho bypassed the G(2)/M arrest and reduced fibrogenic cytokine production. In conclusion, Klotho is a critical negative regulator of Wnt signaling and a suppressor of renal fibrosis in the obstructed kidney model.
Klotho protects against mouse renal fibrosis by inhibiting Wnt signaling.
Klotho 通过抑制 Wnt 信号传导来保护小鼠免受肾纤维化的影响
阅读:4
作者:Satoh Minoru, Nagasu Hajime, Morita Yoshitaka, Yamaguchi Terry P, Kanwar Yashpal S, Kashihara Naoki
| 期刊: | American Journal of Physiology-Renal Physiology | 影响因子: | 3.400 |
| 时间: | 2012 | 起止号: | 2012 Dec 15; 303(12):F1641-51 |
| doi: | 10.1152/ajprenal.00460.2012 | 种属: | Mouse |
| 研究方向: | 信号转导 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
