Parkinson's disease (PD) is a common neurodegenerative disease with a heterogeneous etiology that involves genetic and environmental factors or exogenous. Current LRRK2 PD animal models only partly reproduce the characteristics of the disease with very subtle dopaminergic neuron degeneration. We developed a new model of PD that combines a sub-toxic MPTP insult to the G2019S-LRRK2 mutation. Our newly generated mice, overexpressing mutant G2019S-LRRK2 protein in the brain, displayed a mild, age-dependent progressive motor impairment, but no reduction of lifespan. Cortical neurons from G2019S-LRRK2 mice showed an increased vulnerability to stress insults, compared with neurons overexpressing wild-type WT-LRRK2, or non-transgenic (nTg) neurons. The exposure of LRRK2 transgenic mice to a sub-toxic dose of MPTP resulted in severe motor impairment, selective loss of dopamine neurons and increased astrocyte activation, whereas nTg mice with MPTP exposure showed no deficits. Interestingly, mice overexpressing WT-LRRK2 showed a significant impairment that was milder than for the mutant G2019S-LRRK2 mice. L-DOPA treatments could partially improve the movement impairments but did not protect the dopamine neuron loss. In contrast, treatments with an LRRK2 kinase inhibitor significantly reduced the dopaminergic neuron degeneration in this interaction model. Our studies provide a novel LRRK2 gene-MPTP interaction PD mouse model, and a useful tool for future studies of PD pathogenesis and therapeutic intervention.
G2019S-LRRK2 mutation enhances MPTP-linked Parkinsonism in mice.
G2019S-LRRK2 突变会增强小鼠中 MPTP 相关的帕金森病症状
阅读:3
作者:Arbez Nicolas, He XiaoFei, Huang Yong, Ren Mark, Liang Yideng, Nucifora Frederick C, Wang Xiaofang, Pei Zhong, Tessarolo Lino, Smith Wanli W, Ross Christopher A
| 期刊: | Human Molecular Genetics | 影响因子: | 3.200 |
| 时间: | 2020 | 起止号: | 2020 Mar 13; 29(4):580-590 |
| doi: | 10.1093/hmg/ddz271 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
