Broadly Applicable Control Approaches Improve Accuracy of ChIP-Seq Data.

广泛适用的控制方法提高了 ChIP-Seq 数据的准确性

阅读:4
作者:Petrie Meghan V, He Yiwei, Gan Yan, Ostrow Andrew Zachary, Aparicio Oscar M
Chromatin ImmunoPrecipitation (ChIP) is a widely used method for the analysis of protein-DNA interactions in vivo; however, ChIP has pitfalls, particularly false-positive signal enrichment that permeates the data. We have developed a new approach to control for non-specific enrichment in ChIP that involves the expression of a non-genome-binding protein targeted in the IP alongside the experimental target protein due to the sharing of epitope tags. ChIP of the protein provides a "sensor" for non-specific enrichment that can be used for the normalization of the experimental data, thereby correcting for non-specific signals and improving data quality as validated against known binding sites for several proteins that we tested, including Fkh1, Orc1, Mcm4, and Sir2. We also tested a DNA-binding mutant approach and showed that, when feasible, ChIP of a site-specific DNA-binding mutant of the target protein is likely an ideal control. These methods vastly improve our ChIP-seq results in S. cerevisiae and should be applicable in other systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。