In this work, the influence of accelerated aging on the thermo-mechanical behavior and biotribological properties of an irradiation cross-linked GO/UHMWPE nanocomposite after VE diffusion was investigated, including through differential scanning calorimetry (DSC), gel content, FT-IR characterization, oxidation index, ball indentation hardness, and especially the biotribological properties. The results show that accelerated aging increased the melting point and crystallinity of the nanocomposite, but resulted in a decrease in thermal stability and gel content. The oxidation index increased by 60.2% and the hardness decreased by 18.1%. In particular, the friction coefficient and wear rate increased by 99.5% and 87.4% respectively. A simple VE diffusion process had no obvious effect on the melting point, crystallinity, thermal stability, gel content and hardness, but the oxidation resistance and biotribological performance were improved to a certain extent. On the contrary, when VE exists in the accelerated aging process, the above properties are significantly improved. In particular, the oxidation index decreased by 21.1%, and the friction coefficient and wear rate decreased by 33.7% and 26.4%, respectively. After accelerated aging, fatigue wear and abrasive wear are the main wear forms, while VE plays the function of reducing friction and wear. Besides, the anti-friction and wear resistance mechanism of VE during the accelerated aging process was also illustrated.
Effect of accelerated aging on the thermo-mechanical behavior and biotribological properties of an irradiation cross-linked GO/UHMWPE nanocomposite after VE diffusion.
加速老化对辐照交联GO/UHMWPE纳米复合材料在VE扩散后的热机械性能和生物摩擦学性能的影响
阅读:4
作者:Li Yinbiao, Duan Weipeng
| 期刊: | RSC Advances | 影响因子: | 4.600 |
| 时间: | 2024 | 起止号: | 2024 Oct 11; 14(44):32133-32141 |
| doi: | 10.1039/d4ra05720a | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
