Bacterial flagella drive motility and chemotaxis while also playing critical roles in host-pathogen interactions, as their oligomeric subunit, flagellin, is specifically recognized by the mammalian immune system and flagellotropic bacteriophages. We recently discovered a family of phage-encoded, RNA-guided transcription factors known as TldR that regulate flagellin expression. However, the biological significance for this regulation, particularly in the context of host fitness, remained unknown. By focusing on a human clinical Enterobacter isolate that encodes a Flagellin Remodeling prophage (FRÏ), here we show that FRÏ exploits the combined action of TldR and its flagellin isoform to dramatically alter the flagellar composition and phenotypic properties of its host. This transformation has striking biological consequences, enhancing bacterial motility and mammalian immune evasion, and structural studies by cryo-EM of host- and prophage-encoded filaments reveal distinct architectures underlying these physiological changes. Moreover, we find that FRÏ improves colonization in the murine gut, illustrating the beneficial effect of prophage-mediated flagellar remodeling in a host-associated environment. Remarkably, flagellin-regulating TldR homologs emerged multiple times independently, further highlighting the strong selective pressures that drove evolution of RNA-guided flagellin control. Collectively, our results reveal how RNA-guided transcription factors emerged in a parallel evolutionary path to CRISPR-Cas and were co-opted by phages to remodel the flagellar apparatus and enhance host fitness.
Temperate phages enhance host fitness via RNA-guided flagellar remodeling.
温和噬菌体通过 RNA 引导的鞭毛重塑来增强宿主的适应性
阅读:4
作者:Walker Matt W G, Richard Egill, Wiegand Tanner, Wang Jing, Yang Zaofeng, Casas-Ciniglio Americo A, Hoffmann Florian T, Shahnawaz Hamna, Gaudet Ryan G, Arpaia Nicholas, Fernández Israel S, Sternberg Samuel H
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 22 |
| doi: | 10.1101/2025.07.22.666180 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
