Fumarylacetoacetate hydrolase targeted by a Fusarium graminearum effector positively regulates wheat FHB resistance.

镰刀菌效应子靶向的富马酰乙酰乙酸水解酶可正向调控小麦赤霉病抗性

阅读:5
作者:Shang Shengping, He Yuhan, Zhao Ruihua, Li Hanqi, Fang Ying, Hu Qianyong, Fan Yujin, Wang Yiwei, Zhou Xishi, Wang Penghao, Xing Xiaoping, Zhang Cui-Jun
Fusarium head blight (FHB), caused by Fusarium graminearum is a devastating disease that affects global wheat production. F. graminearum encodes many effector proteins; however, its virulence mechanisms are poorly understood. In this study, we identify a secretory effector candidate (FgEC10) that is essential for the virulence of F. graminearum. FgEC10 interacts strongly with wheat fumarylacetoacetate hydrolase (TaFAH) and accelerates its degradation via the 26S proteasome pathway. In addition, we show that TaFAH interacts with proteasome 26S subunit, non-ATPases 12 (TaPSMD12) and that FgEC10 enhances the interaction between TaFAH and TaPSMD12. RNA silencing or overexpression of TaFAH in wheat plants shows that TaFAH positively regulates wheat FHB resistance. Overexpression of TaFAH promotes the expression of genes associated with disease resistance and the heading period. Metabolomic analysis reveals that overexpression of TaFAH increases the levels of several amino acids in wheat, and exogenous application of some of these amino acids show an increase in F. graminearum resistance in the wheat spike and seedling. Collectively, our study reveals a pathogenic mechanism and provides a valuable gene resource for improving FHB resistance and promoting heading in wheat.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。