While it is now accepted that the microbiome has strong impacts on animal growth promotion, the exact mechanism has remained elusive. Here we show that microbiome-emitted scents contain volatile somatotrophic factors (VSFs), which promote host growth in an olfaction-independent manner in Drosophila. We found that inhaled VSFs are readily sensed by olfactory receptor 42b non-neuronally expressed in subsets of tracheal airway cells, enteroendocrine cells, and enterocytes. Olfaction-independent sensing of VSFs activates the airway-gut-brain axis by regulating Hippo, FGF and insulin-like growth factor signaling pathways, which are required for airway branching, organ oxygenation and body growth. We found that a mutant microbiome that did not produce (2R,3R)-2,3-butanediol failed to activate the airway-gut-brain axis for host growth. Importantly, forced inhalation of (2R,3R)-2,3-butanediol completely reversed these defects. Our discovery of contact-independent and olfaction-independent airborne interactions between host and microbiome provides a novel perspective on the role of the airway-gut-brain axis in microbiome-controlled host development.
Microbiome-emitted scents activate olfactory neuron-independent airway-gut-brain axis to promote host growth in Drosophila.
微生物群释放的气味激活果蝇体内不依赖于嗅觉神经元的呼吸道-肠-脑轴,从而促进宿主生长
阅读:10
作者:Lee Jin-Woo, Lee Kyung-Ah, Jang In-Hwan, Nam Kibum, Kim Sung-Hee, Kyung Minsoo, Cho Kyu-Chan, Lee Ji-Hoon, You Hyejin, Kim Eun-Kyoung, Koh Young Hoon, Lee Hansol, Park Junsun, Hwang Soo-Yeon, Chung Youn Wook, Ryu Choong-Min, Kwon Youngjoo, Roh Soung-Hun, Ryu Ji-Hwan, Lee Won-Jae
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Mar 4; 16(1):2199 |
| doi: | 10.1038/s41467-025-57484-4 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
