Protein misfolding is linked to many neurodegenerative disorders, such as Huntington's disease. The increase of glutamine-encoding CAG repeats in the first exon of huntingtin (HTT) causes Huntington's disease. Protein fragments of Htt exon 1 with polyQ expansion (mutant HTT, mHtt) are prone to aggregation, resulting in oligomers, amyloid fibrils, or large inclusion bodies. Previous studies demonstrate mHtt SUMOylation, a process of covalent attachment of small ubiquitin-like modifiers (SUMO) to target proteins. Protein polySUMOylation further triggers its ubiquitination and segregation by the polySUMO axis. Here, we examined how SUMOylation regulates aggregation and degradation of Htt103QP-GFP, a model mHtt, in budding yeast. We first confirmed Htt103QP-GFP SUMOylation in budding yeast. We also found that recruitment of the SUMO E2-conjugating enzyme to Htt103QP-GFP accelerates its aggregation, but recruitment of a SUMO protease to Htt103QP-GFP delays this process. Disruption of the polySUMO axis led to increased Htt103QP-GFP aggregation. Interestingly, the results from fluorescence recovery after photobleaching assay and treatment with a biomolecular condensate-disrupting chemical indicate that SUMOylation accelerates biomolecular condensate formation of Htt103QP-GFP. Importantly, impaired SUMOylation delays Htt103QP-GFP proteasomal degradation and accelerates formation of SDS-insoluble Htt103QP-GFP aggregates. Together, these results indicate that SUMOylation facilitates proteasomal degradation of misfolded proteins by retaining their solubility.
Regulation of misfolded protein aggregation and degradation by SUMOylation in budding yeast.
出芽酵母中通过 SUMO 化调控错误折叠蛋白的聚集和降解
阅读:3
作者:Folger Austin, Gutierrez-Morton Emily, Kabbaj Marie-Helene, Campbell Mark Tyler, Morton Garret, Megraw Timothy L, Wang Yanchang
| 期刊: | Molecular Biology of the Cell | 影响因子: | 2.700 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 36(7):ar77 |
| doi: | 10.1091/mbc.E24-12-0540 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
