Chromatin structure and DNA accessibility are partly modulated by the incorporation of histone variants. H2A.Z, encoded by the non-essential HTZ1 gene in S. cerevisiae, is an evolutionarily conserved H2A histone variant that is predominantly incorporated at transcription start sites by the SWR1-complex (SWR1-C). While H2A.Z has often been implicated in transcription regulation, htz1Î mutants exhibit minimal changes in gene expression compared to wild-type. However, given that growth defects of htz1Î mutants are alleviated by simultaneous deletion of SWR1-C subunits, previous work examining the role of H2A.Z in gene expression regulation may be confounded by deleterious activity caused by SWR1-C when missing its H2A.Z substrate (apo-SWR1-C). Furthermore, as H2A.Z mutants only display significant growth defects in genotoxic stress conditions, a more substantive role for H2A.Z in gene expression may only be uncovered after exposure to cellular stress. To explore this possibility, we generated mRNA transcript profiles for wild-type, htz1Î, swr1Î, and htz1Îswr1Î mutants before and after exposure to hydroxyurea (HU), which induces DNA replication stress. Our data showed that H2A.Z played a more prominent role in gene activation than repression during HU exposure, and its incorporation was important for proper upregulation of several HU-induced genes. We also observed that apo-SWR1-C contributed to gene expression defects in the htz1Î mutant, particularly for genes involved in phosphate homeostasis regulation. Furthermore, mapping H2A.Z incorporation before and after treatment with HU revealed that decreases in H2A.Z enrichment at transcription start sites was correlated with, but generally not required for, the upregulation of genes during HU exposure. Together this study characterized the regulatory effects of H2A.Z incorporation during the transcriptional response to HU.
Characterizing the regulatory effects of H2A.Z and SWR1-C on gene expression during hydroxyurea exposure in Saccharomyces cerevisiae.
表征 H2A.Z 和 SWR1-C 在酿酒酵母中羟基脲暴露期间对基因表达的调控作用
阅读:7
作者:Brewis Hilary T, Stirling Peter C, Kobor Michael S
| 期刊: | PLoS Genetics | 影响因子: | 3.700 |
| 时间: | 2025 | 起止号: | 2025 Jan 21; 21(1):e1011566 |
| doi: | 10.1371/journal.pgen.1011566 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
