Lamellipodia-like protrusions and focal adhesions contribute to collective cell migration in zebrafish.

斑马鱼中片状伪足状突起和粘着斑促进细胞集体迁移

阅读:3
作者:Olson Hannah M, Nechiporuk Alex V
Collective cell migration is a process where cohorts of cells exhibit coordinated migratory behavior. During individual and collective cellular migration, cells must extend protrusions to interact with the extracellular environment, sense chemotactic cues, and act as points of attachment. The mechanisms and regulators of protrusive behavior have been widely studied in individually migrating cells; however, how this behavior is regulated throughout collectives is not well understood. To address this, we used the zebrafish posterior lateral line primordium (pLLP) as a model. The pLLP is a cluster of ~150 ​cells that migrates along the zebrafish trunk, depositing groups of cells that will become sensory organs. To define protrusive behavior, we performed mosaic analysis to sparsely label pLLP cells with a transgene marking filamentous actin. This approach revealed an abundance of brush-like protrusions throughout the pLLP that orient in the direction of migration. Formation of these protrusions depends on the Arp2/3 complex, a regulator of dendritic actin. This argues that these brush-like protrusions are an in vivo example of lamellipodia. Mosaic analysis demonstrated that these lamellipodia-like protrusions are located in a close proximity to the overlying skin. Immunostaining revealed an abundance of focal adhesion complexes surrounding the pLLP. Disruption of these complexes specifically in pLLP cells led to impaired pLLP migration. Finally, we show that Erk signaling, a known regulator of focal adhesions, is required for proper formation of lamellipodia-like protrusions and pLLP migration. Altogether, our results suggest a model where the coordinated dynamics of lamellipodia-like protrusions, making contact with either the overlying skin or the extracellular matrix through focal adhesions, promotes migration of pLLP cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。