During pathogenesis of Alzheimer's disease (AD), mitochondria suffer alterations that lead to low energy production and reactive oxygen species formation. However, the mechanism of impaired mitochondria homeostasis in AD is not fully understood. We hypothesized that abnormal sphingolipid metabolism in mitochondria could be one of the contributing factors to mitochondrial dysfunction. Synaptic and non-synaptic mitochondria were isolated from 5xFAD and wild type (WT) mice at 3 and 7âmonths using Ficoll gradient ultracentrifugation, and their function was analyzed using Seahorse assay. Additionally, mitochondria were analyzed using mass spectrometry for proteomics and sphingolipidomics analyses. Sphingolipid levels were also determined in synaptic and non-synaptic mitochondria isolated from AD patients and healthy controls. We found that synaptic mitochondria isolated from 3-months old 5xFAD mice manifest diminished oxygen consumption as compared to WT. Consistently, proteomics analysis showed that proteins related to respiratory electron transport and oxidative phosphorylation were altered in 5xFAD mice. When quantifying the main sphingolipids in mitochondria, we found that Cer 18:0, Cer 22:0, and Cer 24:1 were increased already at 3âmonths in 5xFAD mice. No increase in ceramides was detected in mitochondria isolated from AD patients. However, increased levels of sphingosine were found in both 5xFAD mice and AD patients when compared to respective controls. We report that the regulation of sphingolipids in mitochondria is abnormal at 3âmonths of age in 5xFAD mice, as indicated by the accumulation of long-chain ceramides, which increases with age. Sphingosine levels are increased in both the mitochondria of 5xFAD mice and AD patients. Our data suggest that the sphingolipid composition is dysregulated in mitochondria early during AD pathogenesis.
Abnormal Regulation of Mitochondrial Sphingolipids during Aging and Alzheimer's Disease.
衰老和阿尔茨海默病过程中线粒体鞘脂的异常调节
阅读:7
作者:Crivelli Simone M, Quadri Zainuddin, Elsherbini Ahmed, Vekaria Hemendra J, Sullivan Patrick G, Zhi Wenbo, Martinez-Martinez Pilar, Spassieva Stefka D, Bieberich Erhard
| 期刊: | ASN Neuro | 影响因子: | 3.700 |
| 时间: | 2024 | 起止号: | 2024;16(1):2404367 |
| doi: | 10.1080/17590914.2024.2404367 | 研究方向: | 发育与干细胞 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
