2-[(18)F]Fluoro-2-deoxy-d-glucose positron emission tomography ([(18)F]FDG PET) detection of the up-regulated glycolysis associated with malignant transformation is a noninvasive imaging technique used extensively in cancer diagnosis. Although striking similarities exist in glucose transport and metabolism between tumor cells and activated immune cells, the potential use of [(18)F]FDG PET for the diagnosis and evaluation of autoimmune disorders has not been systematically investigated. Here we ask whether [(18)F]FDG PET in conjunction with computed tomography (CT) could be used to monitor a complex autoimmune disorder such as murine experimental autoimmune encephalomyelitis (EAE) and whether this approach is sensitive enough to evaluate therapeutic interventions. We found that (i) coregistration of metabolic (i.e., microPET) and high-resolution anatomical (i.e., CT) images allows serial quantification of glycolysis with [(18)F]FDG in various spinal column segments; (ii) [(18)F]FDG PET/CT can detect the increased glycolysis associated with paralysis-causing inflammatory infiltrates in the spinal cord; and (iii) the [(18)F]FDG measure of glycolysis in the spinal cord is sensitive to systemic immunosuppressive therapy. These results highlight the potential use of serial [(18)F]FDG PET/CT imaging to monitor neuroinflammation in EAE and suggest that similar approaches could be applied to the diagnosis and evaluation of other autoimmune and inflammatory disorders in animal models and in humans.
Positron emission tomography with computed tomography imaging of neuroinflammation in experimental autoimmune encephalomyelitis.
正电子发射断层扫描联合计算机断层扫描成像技术在实验性自身免疫性脑脊髓炎神经炎症中的应用
阅读:3
作者:Radu Caius G, Shu Chengyi J, Shelly Stephanie M, Phelps Michael E, Witte Owen N
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2007 | 起止号: | 2007 Feb 6; 104(6):1937-42 |
| doi: | 10.1073/pnas.0610544104 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
