Reversible cyclosporin A-sensitive mitochondrial depolarization occurs within minutes of stroke onset in mouse somatosensory cortex in vivo: a two-photon imaging study.

可逆的环孢素 A 敏感线粒体去极化发生在小鼠体感皮层中风发作后的几分钟内:一项双光子成像研究

阅读:2
作者:Liu Ran R, Murphy Timothy H
Neuronal structure and function are rapidly damaged during global ischemia but can in part recover during reperfusion. Despite apparent recovery in the hours/days following an ischemic episode, delayed cell death can be initiated, making it important to understand how initial ischemic events affect potential mediators of apoptosis. Mitochondrial dysfunction and the opening of the mitochondrial permeability transition pore (mPTP) are proposed to link ischemic ionic imbalance to mitochondrially mediated cell death pathways. Using two-photon microscopy, we monitored mitochondrial transmembrane potential (Deltapsi(m)) in vivo within the somatosensory cortex during ischemia and reperfusion in a mouse global ischemia model. Our results indicated a synchronous loss of Deltapsi(m) within 1-3 min of ischemic onset that was linked to within seconds of plasma membrane potential (Deltapsi(p)) depolarization. Deltapsi(m) recovered rapidly upon reperfusion, and no delayed depolarization was observed over 2 h. Cyclosporin A treatment largely blocked Deltapsi(m) collapse during ischemia, suggesting a role for the mPTP. Blocking Deltapsi(m) depolarization did not affect structural damage to dendrites, indicating that the opening of the mPTP and damage to dendrites are separable pathways that are activated during Deltapsi(p) depolarization. Our findings using in vivo imaging suggest that mitochondrial dysfunction and specifically the activation of the mPTP are early reversible events during brain ischemia that could trigger delayed cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。