The renin inhibitor aliskiren attenuates high-glucose induced extracellular matrix synthesis and prevents apoptosis in cultured podocytes.

肾素抑制剂阿利沙坦可减弱高糖诱导的细胞外基质合成,并防止培养的足细胞凋亡

阅读:4
作者:Phillips Lynetta M, Wang Ying, Dai Tiane, Feldman David L, LaPage Janine, Adler Sharon G
BACKGROUND/AIMS: Altered extracellular matrix (ECM) remodeling and podocyte apoptosis are characteristic features of diabetic nephropathy (DN). Aliskiren (ALI) inhibits the renin-catalyzed conversion of angiotensinogen to angiotensin I. This study tested ALI's effect on podocyte ECM accretion and survival in a high-glucose environment in vitro. METHODS: Conditionally immortalized mouse podocytes were incubated in normal glucose (NG; 5.5 mM) or high glucose (HG; 40 mM) for 24-48 h with and without ALI (20 nM). Real-time RT-PCR was performed for fibronectin (FN), collagen α5(type IV) (Cola5IV), matrix metalloproteinases 2 and 9 (MMP2 and MMP9), and tissue inhibitor of metalloproteinases 1 and 2 (TIMP1 and TIMP2). Western blots were performed for FN, Cola5IV, MMP2, MMP9, TIMP1 and cleaved (activated) caspase-3. RESULTS: ALI significantly reduced the mRNA and protein levels of FN, Cola5IV and TIMP1, and the mRNA of TIMP2 and cleaved caspase-3. ALI had no effect on MMP2 mRNA or protein or MMP9 mRNA tested under HG conditions. Under NG conditions, ALI had no effect on FN, Cola5IV, MMP2, MMP9 and activated caspase-3 proteins. ALI decreased the activated caspase-3 protein and evidence of apoptosis by TUNEL staining observed in podocytes cultured under HG conditions. CONCLUSION: These results show for the first time that renin inhibition with ALI mitigates the profibrotic and apoptotic effects of HG in cultured podocytes. These data strengthen the therapeutic rationale for renin inhibition with ALI beyond its hemodynamic effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。