BACKGROUND: Cancer-related fatigue (CRF) is a prominent cancer-related complication occurring in Prostate cancer (PCa) patients, profoundly affecting prognosis. The lack of diagnostic criteria and biomarkers hampers the management of CRF. METHODS: The CRF-related data and PCa single-cell data were retrieved from the GEO database and clinical data was downloaded from the TCGA database. The univariate logistic/Cox regression analysis were used to construct the prediction models. The predictive value of models was analyzed using the ROC curve and Kaplan-Meier survival. The hub genes were screened by an intersection analysis of DEGs. The mice model of PCa and PCa-related fatigue were established, and fatigue-like behaviors of mice were detected. The expression of selected hub genes was validated by RT-PCR and IHC analysis. RESULTS: The diagnosis and risk models showed great predictive value both in the training and validation dataset. Five genes (Baiap2l2, Cacng4, Sytl2, Sec31b and Ms4a1) that enriched the CXCL signaling were identified as hub genes. Among all hub genes, the MS4A1 expression is the most significant in PCa-related fatigue mice. CONCLUSIONS: We identified MS4A1 as a promising biomarker for the diagnosis of PCa-related fatigue. Our findings would lay a foundation for revealing the pathogenesis and developing therapies for PCa-related fatigue.
Identification of diagnostic biomarkers in prostate cancer-related fatigue by construction of predictive models and experimental validation.
通过构建预测模型和实验验证,识别前列腺癌相关疲劳的诊断生物标志物
阅读:7
作者:Chen Ming, Zhou Siqi, He Xiongwei, Wen Haiyan
| 期刊: | British Journal of Cancer | 影响因子: | 6.800 |
| 时间: | 2025 | 起止号: | 2025 Feb;132(3):283-294 |
| doi: | 10.1038/s41416-024-02922-1 | 研究方向: | 肿瘤 |
| 疾病类型: | 前列腺癌 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
