Extensin arabinosylation is involved in root response to elicitors and limits oomycete colonization.

延伸蛋白阿拉伯糖基化参与根系对诱导物的反应,并限制卵菌的定殖

阅读:3
作者:Castilleux Romain, Plancot Barbara, Gügi Bruno, Attard Agnès, Loutelier-Bourhis Corinne, Lefranc Benjamin, Nguema-Ona Eric, Arkoun Mustapha, Yvin Jean-Claude, Driouich Azeddine, Vicré Maïté
BACKGROUND AND AIMS: Extensins are hydroxyproline-rich glycoproteins thought to strengthen the plant cell wall, one of the first barriers against pathogens, through intra- and intermolecular cross-links. The glycan moiety of extensins is believed to confer the correct structural conformation to the glycoprotein, leading to self-assembly within the cell wall that helps limit microbial adherence and invasion. However, this role is not clearly established. METHODS: We used Arabidopsis thaliana mutants impaired in extensin arabinosylation to investigate the role of extensin arabinosylation in root-microbe interactions. Mutant and wild-type roots were stimulated to elicit an immune response with flagellin 22 and immunolabelled with a set of anti-extensin antibodies. Roots were also inoculated with a soilborne oomycete, Phytophthora parasitica, to assess the effect of extensin arabinosylation on root colonization. KEY RESULTS: A differential distribution of extensin epitopes was observed in wild-type plants in response to elicitation. Elicitation also triggers altered epitope expression in mutant roots compared with wild-type and non-elicited roots. Inoculation with the pathogen P. parasitica resulted in enhanced root colonization for two mutants, specifically xeg113 and rra2. CONCLUSIONS: We provide evidence for a link between extensin arabinosylation and root defence, and propose a model to explain the importance of glycosylation in limiting invasion of root cells by pathogenic oomycetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。