In skeletal muscle, the L-type voltage-gated Ca(2+) channel (1,4-dihydropyridine receptor) serves as the voltage sensor for excitation-contraction (EC) coupling. In this study, we examined the effects of Rem, a member of the RGK (Rem, Rem2, Rad, Gem/Kir) family of Ras-related monomeric GTP-binding proteins, on the function of the skeletal muscle L-type Ca(2+) channel. EC coupling was found to be weakened in myotubes expressing Rem tagged with enhanced yellow fluorescent protein (YFP-Rem), as assayed by electrically evoked contractions and myoplasmic Ca(2+) transients. This impaired EC coupling was not a consequence of altered function of the type 1 ryanodine receptor, or of reduced Ca(2+) stores, since the application of 4-chloro-m-cresol, a direct type 1 ryanodine receptor activator, elicited myoplasmic Ca(2+) release in YFP-Rem-expressing myotubes that was not distinguishable from that in control myotubes. However, YFP-Rem reduced the magnitude of L-type Ca(2+) current by approximately 75% and produced a concomitant reduction in membrane-bound charge movements. Thus, our results indicate that Rem negatively regulates skeletal muscle EC coupling by reducing the number of functional L-type Ca(2+) channels in the plasma membrane.
Rem inhibits skeletal muscle EC coupling by reducing the number of functional L-type Ca2+ channels.
Rem通过减少功能性L型Ca2+通道的数量来抑制骨骼肌兴奋-收缩耦联
阅读:5
作者:Bannister R A, Colecraft H M, Beam K G
| 期刊: | Biophysical Journal | 影响因子: | 3.100 |
| 时间: | 2008 | 起止号: | 2008 Apr 1; 94(7):2631-8 |
| doi: | 10.1529/biophysj.107.116467 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
