BACKGROUND: Stem cell transplantation has been increasingly used for spinal cord repair, and some achievements have been made. However, limited stem cell sources as well as immune rejection and ethical issues have restricted its wide application. Therefore, to achieve further breakthroughs regarding the application of stem cell transplantation to treat spinal cord injury (SCI), it is important to develop a stem cell line that can effectively avoid immune rejection and ethical issues. METHODS: Urine cells (UCs) were induced to differentiate into induced pluripotent stem cells (iPSCs), which then further differentiated into neural stem cells (NSCs). Relevant tests were performed, and three-dimensional (3D) printed scaffolds were prepared. Thirty C57BL/6 mice were divided into 5 groups based on a random number table: a sham group, an SCI group, an SCI + control group, an SCI + siNC group, and an SCI + siGAS5 group (n=6). The latter 4 groups replicated SCI models. Mice in the SCI + control group were transplanted with 3D scaffolds loaded with iPSC-derived NSCs (iPSd-NSCs). Mice in the SCI + siNC group and the SCI + siGAS5 group were transplanted with scaffolds loaded with iPSd-NSCs-siNC and 3D scaffolds loaded with iPSd-NSCs-siGAS5, respectively. Mice in the other groups were injected with the same amount of normal saline. Hematoxylin-eosin staining was used to observe the histopathology of the injured spinal cord, the Basso-Mouse Scale was used to assess the motor function of the hind limbs of the mice, and Western blot was used to detect the expression of apoptosis-related proteins after SCI. RESULTS: iPSd-NSCs were successfully induced and differentiated, and 3D printed heparin sulfate-collagen scaffolds were prepared, inside which a 3D loose porous structure was shown by electron microscopy. Morphological observations showed that iPSd-NSC transplantation improved SCI in mice, while GAS5 silencing inhibited the reparative effect of iPSd-NSC transplantation on SCI in mice. Western blot results indicated that iPSd-NSC transplantation significantly increased the expression level of B cell lymphoma/leukemia-2 (Bcl-2) (P<0.01) but decreased the expression levels of Bcl-2 associated X protein, cytochrome C, and cleaved caspase-3 (P<0.001). CONCLUSIONS: The overexpression of lncRNA-GAS5 can promote spinal cord repair and inhibit neural apoptosis via the transplantation of 3D printed scaffolds loaded with iPSd-NSCs.
LncRNA-GAS5 promotes spinal cord repair and the inhibition of neuronal apoptosis via the transplantation of 3D printed scaffold loaded with induced pluripotent stem cell-derived neural stem cells.
LncRNA-GAS5 通过移植载有诱导多能干细胞衍生神经干细胞的 3D 打印支架,促进脊髓修复并抑制神经元凋亡
阅读:6
作者:Shao Rongxue, Li Changming, Chen Yan, Zhang Liang, Yang Hejie, Zhang Zhijing, Yue Jun, Gao Wenshuo, Zhu Hang, Pan Hao, Zhou Hui, Quan Renfu
| 期刊: | Annals of Translational Medicine | 影响因子: | 0.000 |
| 时间: | 2021 | 起止号: | 2021 Jun;9(11):931 |
| doi: | 10.21037/atm-21-2570 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
