Hypertonic saline alters hydraulic conductivity and up-regulates mucosal/submucosal aquaporin 4 in resuscitation-induced intestinal edema

高渗盐水改变复苏引起的肠水肿中的水力传导率并上调粘膜/粘膜下水通道蛋白 4

阅读:5
作者:Ravi S Radhakrishnan, Shinil K Shah, Samuel H Lance, Hari R Radhakrishnan, Hasen Xue, Geetha L Radhakrishnan, Uma S Ramaswamy, Peter A Walker, Karen S Uray, Glen A Laine, Randolph H Stewart, Charles S Cox Jr

Conclusions

Hypertonic saline mitigates intestinal edema development and promotes fluid redistribution secondary to increased membrane conductivity at the mucosal and seromuscular surfaces. This is associated with up-regulation of aquaporin 4 gene expression and protein. Aquaporin 4 may be a useful therapeutic target for strategies to enhance edema resolution.

Objective

To characterize membrane conductivity by applying mathematical modeling techniques and immunohistochemistry and to localize and predict areas of the bowel where aquaporins may be associated with edema resolution/prevention associated with hypertonic saline. Intestinal edema induced by resuscitation and mesenteric venous hypertension impairs intestinal transit/contractility. Hypertonic saline decreases intestinal edema and improves transit. Aquaporins are water transport membrane proteins that may be up-regulated with edema and/or hypertonic saline. Design: Laboratory study. Setting: University research laboratory. Subjects: Male Sprague Dawley rats, weighing 270 to 330 g. Interventions: Rats were randomized to control (with and without hypertonic saline) and mesenteric venous hypertension with either 80 mL/kg normal saline (RESUS + VH + VEH) or 80 mL/kg normal saline with hypertonic saline (RESUS + VH + HTS). After 6 hrs, intestinal wet/dry ratios, urine output, peritoneal fluid, and intraluminal fluid were measured. Hydraulic conductivity was calculated from our previously known and published pressure-flow data. The cDNA microarray, Western blot, polymerase chain reaction, and immunohistochemistry studies were conducted for candidate aquaporins and distribution in intestinal edema resolution. Measurements and main

Results

Hypertonic saline decreased edema and increased urine, intraluminal, and peritoneal fluid volume. RESUS + VH favors fluid flux into the interstitium. Hypertonic saline causes increased hydraulic conductivity at the seromuscular and mucosal surfaces at the same time limiting flow into the interstitium. This is associated with increased aquaporin 4 expression in the intestinal mucosa and submucosa. Conclusions: Hypertonic saline mitigates intestinal edema development and promotes fluid redistribution secondary to increased membrane conductivity at the mucosal and seromuscular surfaces. This is associated with up-regulation of aquaporin 4 gene expression and protein. Aquaporin 4 may be a useful therapeutic target for strategies to enhance edema resolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。