Traditional pre-clinical drug evaluation methods, including animal experiments and static cell cultures using human-derived cells, face critical limitations such as interspecies differences, ethical concerns, and poor physiological relevance. More recently, microphysiological systems (MPSs) that use microfluidic devices to mimic in vivo conditions have emerged as promising platforms. By enabling perfusion cell culture and incorporating human-derived cells, MPSs can evaluate drug efficacy and toxicity in a more human-relevant manner. However, standard MPS protocols rely on discrete medium changes, causing abrupt changes in drug concentrations that do not reflect the continuous pharmacokinetics seen in vivo. To overcome this limitation, we developed a Dialysis Membrane-integrated Microfluidic Device (DMiMD) which maintains continuous drug concentrations through selective medium change via a dialysis membrane. The membrane's molecular weight cut-off (MWCO) enables the retention of high-molecular-weight drugs while facilitating the passage of essential low-molecular-weight nutrients such as glucose. We validated the membrane's molecular selectivity and confirmed effective nutrient supply using cells. Additionally, anticancer drug efficacy was evaluated under continuously changing drug concentrations, demonstrating that the DMiMD successfully mimics in vivo drug exposure dynamics. These results indicate that the DMiMD offers a robust in vitro platform for accurate assessment of drug efficacy and toxicity, bridging the gap between conventional static assays and the physiological complexities of the human body.
A Dialysis Membrane-Integrated Microfluidic Device for Controlled Drug Retention and Nutrient Supply.
一种用于控制药物保留和营养供应的透析膜集成微流控装置
阅读:7
作者:Miyashita Hajime, Ito Yuya, Shinha Kenta, Nakamura Hiroko, Kimura Hiroshi
| 期刊: | Micromachines | 影响因子: | 3.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 25; 16(7):745 |
| doi: | 10.3390/mi16070745 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
