A method for detecting molecular transport within the cerebral ventricles of live zebrafish (Danio rerio) larvae.

一种检测活体斑马鱼(Danio rerio)幼鱼脑室内分子运输的方法

阅读:4
作者:Turner Maxwell H, Ullmann Jeremy F P, Kay Alan R
The production and flow of cerebrospinal fluid performs an important role in the development and homeostasis of the central nervous system.However, these processes are difficult to study in the mammalian brain because the ventricles are situated deep within the parenchyma.In this communication we introduce the zebrafish larva as an in vivo model for studying cerebral ventricle and blood–brain barrier function. Using confocal microscopy we show that zebrafish ventricles are topologically similar to those of the mammalian brain.We describe a new method for measuring the dynamics of molecular transport within the ventricles of live zebrafish by means of the uncaging of a fluorescein derivative. Furthermore, we determine that in 5–6 days post-fertilization zebrafish, the dispersal of molecules in the ventricles is driven by a combination of ciliary motion and diffusion. The zebrafish presents a tractable system with the advantage of genetics, size and transparency for exploring ventricular physiology and for mounting large-scale high throughput experiments.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。