The objective of this study was to prepare solid dispersions consisting of baicalein and a carrier with a low glass transition/melting point (Pluronic F68) by spray freeze drying (SFD). We compared these powders to those produced from the conventional solvent evaporation method. In the SFD process, a feeding solution was atomized above the surface of liquid nitrogen following lyophilization, which resulted in instantaneously frozen microparticles. However, solid dispersions prepared by the solvent evaporation method formed a sticky layer on the glass flask with crystalline baicalein separated out from the carrier. The powder samples were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), surface area measurement, differential scanning calorimetry, and Fourier transform infrared spectrometry. SEM and PXRD results suggested that the majority of baicalein in the SFD-processed solid dispersion was in the amorphous state, which has a higher specific surface area than pure baicalein. However, the majority of baicalein was recrystallized in the solid dispersion at the same composition prepared by the solvent evaporation method, which showed a similar dissolution rate to the physical mixture. SFD product was physically and chemically stable after being stored at 40 °C with low humidity for 6 months. After enzyme hydrolysis, baicalein in the SFD product displayed a significantly shorter T (max) and higher C (max) than pure baicalein after oral dosing. The relative bioavailability of the SFD product versus pure baicalein determined by comparing the AUC(0-12) was 233%, which demonstrated the significantly improved oral bioavailability of baicalein produced by the SFD technique.
Comparison of spray freeze drying and the solvent evaporation method for preparing solid dispersions of baicalein with Pluronic F68 to improve dissolution and oral bioavailability.
比较喷雾冷冻干燥法和溶剂蒸发法制备黄芩苷与 Pluronic F68 固体分散体,以提高溶解度和口服生物利用度
阅读:3
作者:He Xiuqiong, Pei Lixia, Tong Henry H Y, Zheng Ying
| 期刊: | AAPS PharmSciTech | 影响因子: | 4.000 |
| 时间: | 2011 | 起止号: | 2011 Mar;12(1):104-13 |
| doi: | 10.1208/s12249-010-9560-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
