Autopolyploidization, which refers to a polyploidization via genome duplication without hybridization, promotes growth in autotetraploids, but suppresses growth in high polyploids (autohexaploids or auto-octoploids). The mechanism underlying this growth suppression (i.e. 'high-ploidy syndrome') has not been comprehensively characterized. In this study, we conducted a kinematic analysis of the root apical meristem cells in Arabidopsis thaliana autopolyploids (diploid, tetraploid, hexaploid, and octoploid) to determine the effects of the progression of genome duplication on root growth. The results of the root growth analysis showed that tetraploidization increases the cell volume, but decreases cell proliferation. However, cell proliferation and volume growth are suppressed in high polyploids. Whole-mount fluorescence in situ hybridization analysis revealed extensive chromosome polytenization in the region where cell proliferation does not usually occur in the roots of high polyploids, which is likely to be at least partly correlated with the suppression of endoreduplication. The study findings indicate that chromosome polytenization is important for the suppressed growth of high polyploids.
Plant chromosome polytenization contributes to suppression of root growth in high polyploids.
植物染色体多线化会导致高度多倍体植物根系生长受到抑制
阅读:3
作者:Kikuchi Suzuka, Sakamoto Takuya, Matsunaga Sachihiro, Sugiyama Munetaka, Iwamoto Akitoshi
| 期刊: | Journal of Experimental Botany | 影响因子: | 5.700 |
| 时间: | 2024 | 起止号: | 2024 Sep 27; 75(18):5703-5716 |
| doi: | 10.1093/jxb/erae288 | 研究方向: | 信号转导 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
