CCK-independent mTORC1 activation during dietary protein-induced exocrine pancreas growth.

膳食蛋白质诱导外分泌胰腺生长过程中 CCK 非依赖性 mTORC1 激活

阅读:3
作者:Crozier Stephen J, Sans M Dolors, Wang Jackie Y, Lentz Stephen I, Ernst Stephen A, Williams John A
Dietary protein can stimulate pancreatic growth in the absence of CCK release, but there is little data on the regulation of CCK-independent growth. To identify mechanisms whereby protein stimulates pancreatic growth in the absence of CCK release, C57BL/6 control and CCK-null male mice were fed normal-protein (14% casein) or high-protein (75% casein) chow for 7 days. The weight of the pancreas increased by 32% in C57BL/6 mice and 26% in CCK-null mice fed high-protein chow. Changes in pancreatic weight in control mice were due to both cell hypertrophy and hyperplasia since there was an increase in protein-to-DNA ratio, total DNA content, and DNA synthesis. In CCK-null mice pancreatic growth was almost entirely due to hypertrophy with both protein-to-DNA ratio and cell size increasing without significant increases in DNA content or DNA synthesis. ERK, calcineurin, and mammalian target of rapamycin complex 1 (mTORC1) are activated in models of CCK-induced growth, but there were no differences in ERK or calcineurin activation between fasted and fed CCK-null mice. In contrast, mTORC1 activation was increased after feeding and the duration of activation was prolonged in mice fed high-protein chow compared with normal-protein chow. Changes in pancreatic weight and RNA content were completely inhibited, and changes in protein content were partially abated, when the mTORC1 inhibitor rapamycin was administered during high-protein chow feeding. Prolonged mTORC1 activation is thus required for dietary protein-induced pancreatic growth in the absence of CCK.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。