Super-resolution microscopy can capture spatiotemporal organizations of protein interactions with resolution down to 10 nm; however, the analyses of more than two proteins involving low-abundance protein are challenging because spectral crosstalk and heterogeneities of individual fluorescent labels result in molecular misidentification. Here we developed a deep learning-based imaging analysis method for spectroscopic single-molecule localization microscopy to minimize molecular misidentification in three-color super-resolution imaging. We characterized the 3-fold reduction of molecular misidentification in the new imaging method using pure samples of different photoswitchable fluorophores and visualized three distinct subcellular proteins in U2-OS cell lines. We further validated the protein counts and interactions of TOMM20, DRP1, and SUMO1 in a well-studied biological process, Staurosporine-induced apoptosis, by comparing the imaging results with Western-blot analyses of different subcellular portions.
Minimizing Molecular Misidentification in Imaging Low-Abundance Protein Interactions Using Spectroscopic Single-Molecule Localization Microscopy.
利用光谱单分子定位显微镜成像低丰度蛋白质相互作用时最大限度地减少分子误识别
阅读:6
作者:Zhang Yang, Wang Gaoxiang, Huang Peizhou, Sun Edison, Kweon Junghun, Li Qianru, Zhe Ji, Ying Leslie L, Zhang Hao F
| 期刊: | Analytical Chemistry | 影响因子: | 6.700 |
| 时间: | 2022 | 起止号: | 2022 Oct 11; 94(40):13834-13841 |
| doi: | 10.1021/acs.analchem.2c02417 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
