Quantitative Aspect of Bacillus subtilis σB Regulatory Network-A Computational Simulation.

枯草芽孢杆菌σB调控网络的定量方面——计算模拟

阅读:5
作者:Vohradsky, Jiri
Bacillus subtilis is a model organism used to study molecular processes in prokaryotic cells. Sigma factor B, which associates with RNA polymerase, is one of the transcriptional regulators involved in the cell's response to environmental stress. This study addresses the key question of how the levels of free SigB, which acts as the actual regulator of gene expression, are controlled. A set of chemical equations describing the network controlling the levels of free SigB was designed, leading to a set of differential equations quantifying the dynamics of the network. Utilizing a microarray-measured gene expression time series then allowed the simulation of the kinetic behavior of the network in real conditions and investigation of the role of phosphatases RsbU/RsbP transmitting the environmental signal and controlling the amounts of free SigB. Moreover, the role of kinetic constants controlling the formation of the molecular complexes, which consequently influence the amount of free SigB, was investigated. The simulation showed that although the total amount of sigma B is relatively high in the unstressed population, the amount of free SigB, which actually controls its regulon, is quite low. The simulation also allowed determination of the proportion of all the network members that were free or bound in complexes. While previously the qualitative features of B. subtilis SigB have been studied in detail, the kinetics of the network have mostly been ignored. In summary, the computational results based on experimental data provide a quantitative insight into the functioning of the SigB-dependent circuit and provide a roadmap for its further exploration in this industrially important bacterium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。