A genome-wide RNA interference screening reveals protectiveness of SNX5 knockdown in a Parkinson's disease cell model.

全基因组 RNA 干扰筛选揭示了 SNX5 敲低在帕金森病细胞模型中的保护作用

阅读:19
作者:Höllerhage Matthias, Duan Linghan, Chua Oscar Wing Ho, Moebius Claudia, Bothe Svenja H, Losse Kristina, Kotzur Rebecca, Lau Kristina, Hopfner Franziska, Richter Franziska, Wahl-Schott Christian, Bickle Marc, Höglinger Günter U
BACKGROUND: Alpha-synuclein (αSyn) is a major player in the pathophysiology of synucleinopathies, which include Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. To date, there is no disease-modifying therapy available for these synucleinopathies. Furthermore, the intracellular mechanisms by which αSyn confers toxicity are not yet fully understood. Therefore, it is of utmost importance to investigate the pathophysiology of αSyn-induced toxicity in order to identify novel molecular targets for the development of disease-modifying therapies. METHODS: We performed the first genome-wide siRNA modifier screening in a human postmitotic neuronal cell model using αSyn-induced toxicity as a read-out. In a multi-step approach, we identified several genes, whose knockdown protected against αSyn-induced toxicity. The main hit was further validated by different methods, including immunofluorescence microscopy, qPCR, and Western blot. Furthermore, the main finding was confirmed in mouse primary neurons. RESULTS: The highest protection was achieved by knockdown of SNX5, which encodes the sorting nexin 5 (SNX5) protein, a component of the retromer complex. The protective efficacy of SNX5 knockdown was confirmed with an independent siRNA system. The protective effect of SNX5 knockdown was further confirmed in primary neurons from transgenic mice, where the knockdown of SNX5 led to amelioration of decrease in synchrony that was observed in untreated and control-siRNA-treated cells. SNX5 protein is a component of the SNX-BAR (Bin/Amphiphysin/Rvs) heterodimer, which is part of the retromer complex. Extracellular αSyn and overexpression of intracellular αSyn led to fragmentation of the trans-Golgi network, which was prevented by SNX5 knockdown that led to confinement of αSyn in early endosomes. CONCLUSION: In summary, our data suggest that SNX5 plays an important role in the trafficking and toxicity of αSyn. Therefore, SNX5 appears to be a target of therapeutic intervention for synucleinopathies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。