Data treatment methods for real-time colorimetric loop-mediated isothermal amplification reactions.

实时比色环介导等温扩增反应的数据处理方法

阅读:4
作者:Kim Edson Yu Sin, Imamura Louise Matiê, Winkert Raddatz Bruna, Timm Soares Santiago Pedro, Alves Ribeiro Victor Henrique, Rinaldi Pavesi Nicollete Diego, Bergamo Santiago Erika, Mazega Figueredo Marcus Vinícius, Montesanti Machado de Almeida Bernardo, Renato Rogal Sergio Jr
With the SARS-CoV-2 pandemic and the need for affordable and rapid mass testing, colorimetric isothermal amplification reactions such as Loop-Mediated Isothermal Amplification (LAMP) are quickly rising in importance. The technique generates data that is similar to quantitative Polymerase Chain Reaction (qPCR), but instead of an endpoint color visualization, it is possible to construct a signal over a time curve. As the number of works using time-course analysis of isothermal reactions increases, there is a need to analyze data and standardize their related treatments quantitatively. Here, we take a step forward toward this goal by evaluating different available data treatments (curve models) for amplification curves, which allows for a cycle threshold-like parameter extraction. In this study, we uncover evidence of a double sigmoid equation as the most adequate model to describe amplification data from our remote diagnostics system and discuss possibilities for similar setups. We also demonstrate the use of multimodal Gompertz regression models. Thus, this work provides advances toward standardized and unbiased data reporting of Reverse Transcription (RT) LAMP reactions, which may facilitate and quicken assay interpretation, potentially enabling the application of machine learning techniques for further optimization and classification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。