Neuroprotection of Glibenclamide against Brain Injury after Cardiac Arrest via Modulation of NLRP3 Inflammasome.

格列本脲通过调节 NLRP3 炎症小体对心脏骤停后脑损伤的神经保护作用

阅读:13
作者:Yang Xiuli, Wang Zhuoran, Jia Xiaofeng
Glibenclamide (GBC) improves cerebral outcome after cardiac arrest (CA) in rats. We aim to investigate the effect of GBC on electrophysiological recovery and to explore the mechanism of neuroprotective effects of GBC on the acute stage of brain injury after the return of spontaneous circulation (ROSC) in a rodent model of CA. 16 anesthetized male Wistar rats subjected to 8-min asphyxia-CA were randomly assigned to the GBC or control group (N=8 each group). GBC was administered with a loading dose of 10ug/kg i. p. injection 10 min after ROSC and followed with a maintaining dose of 1.6ug/kg per 8 hours throughout the first 24 hours. Quantitative measures of EEG-information quantity (qEEG-IQ) and neurological deficit score (NDS) were used to predict and evaluate the functional outcome. There was a significant improvement of NDS in rats treated with GBC compared with the control group (p <; 0.01). Compared to the control group, the rats treated with GBC showed qEEG-IQ scores that indicated better recovery (p <; 0.001). Meanwhile, early QEEG-IQ was significantly correlated with 72-hr NDS as early as 45min after ROSC. Furthermore, on the molecular basis, the NLRP3 inflammasome was strongly activated in the hippocampal CA1 area 3 days after CA in control rats, which was suppressed with GBC treatment. Taken together, GBC treatment markedly improved electrophysiological and neurologic outcomes of the acute brain injury after CA. These neuroprotective effects may be associated with the attenuation of inflammatory response via down-regulation of NLRP3 inflammasome signal.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。