Neuroprotective Effects of Tauroursodeoxicholic Acid Involves Vascular and Glial Changes in Retinitis Pigmentosa Model.

牛磺熊去氧胆酸的神经保护作用涉及视网膜色素变性模型中的血管和神经胶质变化

阅读:6
作者:Fernández-Sánchez Laura, Albertos-Arranz Henar, Ortuño-Lizarán Isabel, Lax Pedro, Cuenca Nicolás
PURPOSE: Retinitis pigmentosa is primarily characterized by a massive photoreceptor loss. But a global retinal remodeling occurs in later stages of the disease. At that phase, glial cells and retinal vasculature are also strongly affected. The main aim of the present work is to assess if the bile acid Tauroursodeoxicholic acid (TUDCA), which has a demonstrated neuroprotective effect in numerous neurodegenerative diseases, is able to prevent glial and vascular degeneration in the P23H rat retina. METHODS: Homozygous P23H (line 3) animals were injected weekly with a TUDCA (500 mg/kg, i.p.) or vehicle solution, from the postnatal day (P) 21 to P120. Sprague-Dawley rats (SD) were used as control. Retinal cross-sections and wholemounts were immunostained using different glial and vascular markers and visualized with confocal microscopy. Retinal blood vessels were stained with nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase histochemistry and retinal vascular networks were drawn by hand using a camera lucida. RESULTS: At P120, the photoreceptor degeneration observed in P23H rats was accompanied by a reduction in the vascular network density and complexity at the deep capillary plexus. In addition, astrocytes showed gliotic features and the outer processes of Müller cells displayed an aberrant distribution in ring-shaped structures. When treated with TUDCA, P23H rats displayed better-preserved vessels and capillary loops in the deep capillary plexus which are associated with the partial preservation of photoreceptors. TUDCA treatment also increased the number of astrocytes and reduced the presence of Müller cell process clusters in the outer retina. CONCLUSION: This work suggests that, besides its neuroprotective effect on photoreceptor cells, TUDCA treatment also protects from vascular and glial degeneration, a fact that encourages the use of TUDCA as a powerful therapy for neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。